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ABSTRACT: Dead reckoning is employed in Advanced Distributed Simulation exercises to reduce the need to 
continually update a simulated entity’s state information. The IEEE Distributed Interactive Simulation (DIS) protocol 
provides a standard set of 11 algorithms for entity position and orientation dead reckoning. Related to dead reckoning 
is the heartbeat mechanism used to periodically define the current state of an entity. The IEEE standard defines 
heartbeat rates for many Protocol Data Units (PDUs) with default values specified for rate of issuance of heartbeat 
PDUs and timeout. Both the dead reckoning and heartbeat mechanisms are required to maintain continuity of entities 
within a distributed simulation exercise. To study dead reckoning and heartbeat, a model was developed that simulates 
these two mechanisms within DIS for entity position. This model can perform sensitivity analysis on the critical 
parameters, such as entity speed, heartbeat rate and dead reckoning threshold for different dead reckoning algorithms. 
The model demonstrated that the second order algorithm using acceleration and velocity is far more efficient than the 
first order algorithm that used only velocity. Third order algorithms that use rate of change of acceleration were also 
studied and shown to offer only marginal improvement while requiring additional computational resources. The model 
also demonstrated that the default values for threshold are too small for fast moving entities such as aircraft and can be 
used to determine more appropriate values. The fraction of heartbeat to dead reckoning PDUs was examined for 
several different entity types (tank, aircraft, missile) with appropriate settings for threshold and heartbeat rate. It was 
shown that the use of a fixed heartbeat rate is not appropriate for all entity types and that heartbeat PDUs predominate 
for high values of threshold. The model also shows that issuance of heartbeat PDUs depends on which dead reckoning 
algorithm is used: if an efficient algorithm that requires few dead reckoning PDUs is adopted, more heartbeat PDUs 
are then required to maintain the entity within the simulation exercise. 
 
 
1. Introduction 
 
Advanced Distributed Simulation (ADS) was created to 
link simulators, simulations and/or real devices so that the 
various entities can interact with each other to conduct a 
simulated game or exercise in the same synthetic 
battlespace. ADS has been under development since the 
early 1980s with the Simulator Networking (SIMNET) 
Project undertaken by the US Defense Advanced 
Research Projects Agency [1] and has continued through 
the emergence of Distributed Interactive Simulation (DIS) 
[2] in the early 1990s and High Level Architecture (HLA) 
[2] in the late 1990s. In parallel with these efforts, the 
Test and Training Enabling Architecture (TENA) has 
been established to enable the live range community to 
participate in distributed simulation exercises [3]. 
 
Distributed Interactive Simulation (DIS) is a networking 
protocol standard that provides a method of 
communicating entity state and other information such as 
voice communications, radar and sonar emissions through 

Protocol Data Units (PDUs). These PDUs consist of data 
packets which are broadcast over the simulation network. 
Standards for DIS PDUs were developed under the 
guidance of the DIS Coordinating Committee based in the 
US and utilising the Institute of Electrical and Electronic 
Engineers (IEEE) Standards approval process [5], [6], [7]. 
The latest standard IEEE-1278.1a-1998 was released in 
1998 [7]. 
 
A key feature of DIS is its use of a technique known as 
dead reckoning to limit the rate at which simulated 
entities need to update their entity attributes such as 
position and velocity. DIS also uses the so-called 
heartbeat mechanism to maintain the continuity of entities 
within a simulation exercise when no dead reckoning 
PDUs are issued. This paper describes a model that 
simulates the dead reckoning and related heartbeat 
mechanisms in DIS. 
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2. Dead Reckoning and Heartbeat 
Mechanisms in DIS 

 
DIS employs both dead reckoning and heartbeat 
mechanisms are required to maintain continuity of entities 
within a distributed simulation exercise. These 
mechanisms are described in the following sections. 
 
2.1 Dead Reckoning Mechanism 
 
DIS employs dead reckoning to limit the rate at which 
Entity State PDUs (that include the entity’s positional and 
orientation information) are issued. By estimating the 
position/orientation of other simulated entities, it is not 
necessary to receive a report about every change in 
position/orientation that occurs in the entities trajectory 
over time. Only when a change in position and orientation 
differs by a prespecified amount (threshold) from the dead 
reckoned position and orientation is a new update 
required. 
 
Further, each simulation application maintains both a high 
fidelity model of the position and orientation of the 
entities it generates (such as aircraft) and also a dead 
reckoned model. When these differ by a given threshold 
amount, an Entity State PDU is issued by the simulation 
application to inform the other participating simulations. 
Smoothing techniques can be used to eliminate jumps that 
may occur in a visual display when the dead reckoned 
position/orientation of an entity is corrected to the most 
recently communicated position/orientation. 
 
Dead reckoning can also be applied to articulated parts 
such as a tank turret or submarine periscope. Absolute 
linear error for each articulated part in a chain of 
connected parts is used to determine if a threshold has 
been exceeded. 
 
2.2 Heartbeat Mechanism 
 
Related to dead reckoning is the heartbeat mechanism 
used to periodically define the current state of an entity. 
Both the dead reckoning and heartbeat mechanisms are 
required to maintain continuity of entities within a 
distributed simulation exercise. For example, if an entity 
is travelling in a straight line at constant velocity, then its 
position can be accurately extrapolated at any future time 
so that no dead reckoning update PDUs will be issued. 
Thus, if the heartbeat PDUs were not issued, the entity 
would time out and disappear from the simulation. 
 
The IEEE standard defines heartbeat rates for many PDUs 
with default values specified. These include simulation 
for radios via the Transmitter PDU and IFF systems via 
the IFF PDU (implemented in IEEE-1278.1a-1998). 

However, there is some flexibility in the standard. The 
values in Table 1 are the default values defined by the 
IEEE standard. 
 
Table 1: Default heartbeats for various PDUs as defined 

by IEEE standard 
PDU Type Heartbeat Rate 

Entity State and Entity 
State Update 

5 s 

Transmitter 
(static/moving) 

5 s / 2 s 

Receiver 5 s 
Designator 5 s 
Electromagnetic 
Emission 

5 s 

IFF/ATC/NAVAIDS 10 s 
 
The Entity State heartbeat rate uses the symbolic name 
HRT_BEAT_TIMER that has a default value of 5 s. An 
entity times out of a simulation if an update PDU is not 
received within a time interval determined by multiplying 
the heartbeat multiplier rate HRT_BEAT_MPLIER (with 
default value of 2.4) by the heartbeat rate – giving a 
default value of 12 s. 
 
Other PDUs also use the heartbeat mechanism including 
Underwater Acoustics, Aggregate State, IsGroupOf, 
Minefield State, Environmental Process, Gridded Data, 
and Time Space Position Information [7]. 
 
2.3 Dead Reckoning Algorithms 
 
DIS provides a standard set of 11 dead reckoning 
algorithms. These include expressions for both positional 
and orientation dead reckoning. They are specified by 3 
letters – the first indicates whether the entity is fixed (F) 
or rotating (R), the second indicates whether dead 
reckoning rates are held constant as either rate of position 
(P) or rate of velocity (V), while the third indicates 
whether world coordinates (W) or body axis (B) 
coordinates are used. Thus FPW specifies an algorithm 
with orientation fixed and a constant rate of position in 
world coordinates [6] and is given by: 
 

tVPP ∆+= 001  
 
The second order algorithm uses both the velocity and 
acceleration terms and is defined as: 
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which is the Fixed Velocity World (FVW) algorithm. 
Here subscript “0” refers to the parameters position (P), 
velocity (V), and acceleration (A) at the start of the 
interval and subscript “1” refers to the same parameters 

 



 

calculated at the end of the interval of duration ∆t. Thus 
the first order algorithm contains only the velocity term, 
whereas the second order algorithm includes the 
acceleration term. These values are calculated at the start 
of the interval. 
 
2.4 Threshold Calculation 
 
The DIS IEEE 1278 standard (4.5.2.1.2.1 of [6]) defines 
“the default method for calculating positional accuracy as 
a threshold change in any direction or orientation”, and 
(B.1.1) states that “Only when a change in position and 
orientation differs by a prespecifed amount (threshold) 
from the dead reckoned position and orientation is a new 
update required.” These statements are ambiguous, and 
can been interpreted two ways: 

1. Component difference: If any of |∆x|, |∆y|, |∆z| 
exceeds the threshold, where x, y, z define the 
positional vector, then an Entity State PDU must 
be issued. 

2. Vector difference: If |∆p| exceeds the threshold, 
where p is the positional vector, then an Entity 
State PDU must be issued. The formula for 
calculating vectorial difference is: 

 
2

0
2

0
2

0 )()()( zzyyxxp ddd −+−+−=∆  

 
Whilst the vector difference method is more complicated 
to calculate, it ensures that an entity is never more than 1 
m (or the prescribed threshold) away from its actual 
location, whereas using the component difference method, 
an entity can be within the threshold bounds yet be further 
away from its actual location, for example, ∆x = ∆ y = ∆z 
= 0.9 m, |∆p|≈1.56 m. 
 
The vector difference method has been used in the present 
work. 

 
2.5 Previous Work on Dead Reckoning 
 
Previous work has been carried out on dead reckoning. 
Lin and Schab [9] assessed the performance of dead 
reckoning using a software tool considering four factors: 
network load, computational load of the simulator, 
accuracy of the dead reckoned trajectory compared with 
the true trajectory, and smoothness of the dead reckoned 
trajectory in the visual display using both data from a 
flight simulator and an artificial race track trajectory. 
Parts of this work were also published elsewhere [10 - 
11].  
 
This work predates the initial IEEE DIS standard and 
appears to have been carried out to determine which dead 
reckoning algorithms provide the best results. In [11], for 

example, the authors examined many candidate 
algorithms to determine which gave the best performance 
in dead reckoning the flight simulator data. Many of these 
trial algorithms were not included in the final DIS 
standard set of dead reckoning algorithms. 
 
Durbach and Fourneau studied the performance 
evaluation of dead reckoning algorithms from a network 
perspective [12]. PDU inter-arrival times were modelled 
using a two state Markov process with parameters for the 
model determined from experimental data. These authors 
did not consider dead reckoning algorithms in detail but 
rather developed a model to fit experimental data. 
 
A more recent publication [13] examined the requirement 
for adaptive dead reckoning algorithms. These authors 
proposed an adaptive mechanism that sets thresholds 
depending on Area of Interest and Sensitive Region where 
update packets are only sent to relevant entities depending 
on threshold level, so that a close entity may receive more 
updates than a distant entity.  
 
Dead reckoning is also used in distributed multi-player 
games to reduce network traffic. Recent work indicated 
the need for globally synchronized clocks to improve 
accuracy [14]. 
 
3. Simulation Model for Dead Reckoning 

and Heartbeat Update 
 
To investigate the dead reckoning and heartbeat 
mechanisms in DIS, a simulation model was developed in 
the scripting language tcl/tk to study the effects for both 
circular and elliptic manoeuvres. The circle is the most 
tractable from a computational perspective and thus dead 
reckoning calculations are straightforward.  The ellipse 
includes one extra parameter since it has both minor and 
major axes. 
 
This model enabled sensitivity analysis to be performed 
for the critical parameters of speed, radius, dead 
reckoning threshold, and heartbeat update rate. The model 
computes an entity’s trajectory around a circular path as 
perceived by another simulation. At each time interval, 
the dead-reckoned position is calculated using the 
equations in section 2.3 for both first and second order 
algorithms. When this calculated position deviates from 
the exact position by the threshold value, it is reset to the 
exact position to emulate the update mechanism, and the 
simulation continued. 
 
In earlier work, results were also calculated for other 
trajectories such as an ellipse which resulted in similar 
findings to the present work [13]. 
 

 



 

For the case of an entity travelling in a horizontal circle, 
the equations of motion are simply given as: 
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where ω is the angular velocity, and r is the radius. The 
remote entity’s dead reckoned trajectory is tangential to 
the exact circular trajectory until an update PDU is 
received. 
 
Figure 1 shows a screen shot from the model. 
 

 
 
Figure 1: Screen shot from simulation model on PC 
 
3.1 First and Second Order Algorithms for Circle 
 
Table 2 shows the number of Entity State PDUs that 
would be issued for circles of different radii for a 
complete orbit using both the first and second order 
algorithms with threshold set to 1 m in all cases. The 
aircraft speed is set to 200 m/s and heartbeat update rate 
to a high value of 1000 s so that the differences between 
the two algorithms can be studied. 
 
As expected, the number of PDUs issued increases as the 
radius is increased, although this does not scale linearly. 
For example, with a 20000 m radius, 628 PDUs are 
needed if the first order algorithm is used, whereas only 
125 are needed for a circle with 1000 m radius. For 
smaller radii, the aircraft will be constantly turning in a 

tight circle thus resulting in deviation from the linear and 
quadratic tangential trajectories predicted by the dead 
reckoning algorithms, whereas for larger radii the 
deviation from the dead reckoning algorithms will be less 
marked. 

Table 2: PDUs issued for different radii 
Radius (m) Number of PDUs 

 First Order 
(FPW) 

Second Order 
(FVW) 

1000 125 33 
2500 196 46 
5000 314 58 
10000 418 73 
20000 628 93 

 
Further, for each radius considered, at least three times as 
many PDUs are required to remain within threshold for 
the first order algorithm, than for the second order 
algorithm. This indicates that the second order algorithm 
much more effectively approximates the entity’s 
trajectory than does the first order. 
 
In Table 3, the effect of varying the threshold is examined 
with an aircraft traveling at 200 m/s around a circle of 
radius 5000 m. As expected, the number of PDUs 
required decreases when the threshold is increased since 
the predictive algorithms remain within threshold for 
longer resulting in fewer entity updates. 
 

Table 3: PDUs issued for different thresholds 
Threshold (m) Number of PDUs 
 First Order 

(FPW) 
Second Order 

(FVW) 
0.5 392 71 
1 314 58 

2.5 196 42 
5 130 34 

10 98 27 
25 62 20 
50 43 16 

 
Varying both radii and threshold independently shows the 
expected behaviour: (a) as radius is increased, more PDUs 
are required, while (b) as threshold is increased, fewer 
PDUs are required to predict the entity’s trajectory. 
 
Of greater significance in these results is the considerable 
difference between the numbers of update PDUs that 
would be required for the two algorithms. In every case, 
the first order algorithm requires about three times as 
many update PDUs to be broadcast as the second order 
algorithm. Thus the second order algorithm provides a far 
more efficient means of extrapolating entity positions.  
 

 



 

A simulation model was also developed for the elliptical 
trajectory. This showed that at least three times as many 
updates would be required if the first order algorithm was 
used in preference to the second order algorithm. 
 
As described in section 2.4, there is ambiguity as to 
whether a component difference or vectorial difference 
should be implemented. The current model has the ability 
to use either method. For a circle, there is little difference 
between the number of PDUs issued since for large values 
of radius, only one component changes significantly so 
that the vectorial difference is very similar to the 
maximum value of component difference. 
 
For an ellipse, there is more difference between the 
vectorial and component method of calculating threshold 
difference than for the circle. Simulations were run 
varying threshold for an ellipse with major and minor 
axes 10000 and 6000 m respectively leading to the results 
in Table 4. 
 
Table 4: PDUs issued for different threshold settings 
using the elliptical trajectory for both threshold 
calculation methods – results for the component method 
are in brackets. 

Threshold (m) PDUs Issued 
 First Order  

(FPW) 
Second Order 

(FVW) 
1 380 (280) 108 (80) 

2.5 237 (179) 62 (49) 
5 173 (131)  46 (36) 

10 122 (91) 35 (28) 
20 86 (65) 28 (23) 

 
As expected, the vectorial method yields a greater number 
of PDUs than the component method since the threshold 
is exceeded more readily. 
 
3.2 Comparison with Experimental Results 
 
The model was compared with experimental data from a 
simple DIS-compliant Computer Generated Forces (CGF) 
model from Mak (www.mak.com). This model uses an 
aircraft entity that orbits around a fixed point at constant 
speed. The parameters speed, radius, and dead reckoning 
algorithm can be readily set while varying the other 
parameters such as threshold requires editing and 
recompilation. 
 
Table 5 shows a comparison between the simulation 
model predictions and the CGF system for several 
different orbits using the 1 m threshold value. 
 
 

Table 5: PDUs issued for different radii with threshold 
set to 1m 

Radius (m) PDU Rate (CGF results in brackets) 
 First Order 

(FPW) 
Second Order 

(FVW) 
1000 3.98 (4.024) 1.05 (1.0526) 
2500 2.495 (2.507) 0.586 (0.588) 
5000 2.00 (1.818) 0.374 (0.370) 
10000 1.333 (1.33) 0.235 (0.235 
20000 0.99 (0.959) 0.148 (0.154) 

 
These results demonstrate that the model provides 
excellent agreement (better than 0.1%) with experimental 
data providing confidence in its predictive capabilities. 
 
The CGF model was able to use a range of dead 
reckoning algorithms. Figure 2 shows the times at which 
the first update PDU is required to be issued for the dead 
reckoning algorithms supported (1 to 5) and for different 
values of threshold. 
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Figure 2: Times at which first dead reckoned PDU is 
issued for different algorithms and threshold values (each 
line represents a different threshold setting). 
 
The data clearly show a significant advantage for the 
second order algorithm (number 5). For each value of 
threshold it predicts the highest issuance time for an 
update PDU. Moreover, at the higher threshold settings 
this time approaches the default heartbeat update time of 
5 s. Here, orientation threshold has been set to a high 
value of 30° so that algorithms 4 and 5 are very similar; if 
the default value of 3° is used, algorithm 4 (RVW), that 
includes orientation, is clearly superior. 
 
3.3 Third Order Algorithms 
 
First and second order algorithms have been addressed in 
the previous sections. In earlier work [9], third order 
algorithms were also studied. These include the rate of 
change of acceleration as well as velocity and acceleration 
to predict future entity positions.  
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The simulation model was extended to include a sample 
third order algorithm (from [11]) that used the following 
formula to predict position: 
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where a0 is the acceleration at the start of the interval, a-1 
is the acceleration when the previous update PDU was 
issued, and ∆t-1 is the time interval between the previous 
two update times. This algorithm has at least 10 floating 
point operations and thus will be more computationally 
expensive than the first and second order algorithms 
studied earlier. Note also that this is only one possible 
third order algorithm; there are 4 other similar algorithms 
that calculate dead reckoned position using different 
means of computing change of acceleration [10]. 
 
PDU issuance rates and RMS errors were calculated using 
the model for the third order algorithm for a range of 
thresholds under the same conditions as in the previous 
section. These results are shown in Table 6. 
 
Table 6: PDU rates and RMS errors for second and third 
order algorithms for an aircraft traveling at 200 m/s 
around a circle of 5000 m radius 

Threshold 
(m) 

Second/Third 
Order 
PDUs/s 

Second/Third 
Order RMS (m) 

0.5 0.464/0.293 0.0037/0.0035 
1.0 0.369/0.223 0.0073/0.0073 
2.5 0.274/.0.178 0.017/0.017 
5 0.216/0.153 0.034/0.033 

10 0.172/0.127 0/069/0.066 
 
These results show that the addition of third order terms 
does not significantly improve the accuracy of the 
extrapolation so that the additional computation is not 
warranted. For example, with a 5 m threshold, 0.216 
PDUs/s are issued with an RMS error of 0.034 m for the 
second order algorithm. The third order algorithm predicts 
a slightly lower PDU issuance rate of 0.153/s but with a 
similar RMS error of 0.033 m. 
 
3.4 Effect of Heartbeat Mechanism 
 
In the previous sections, the heartbeat rate was set to 
1000s so that the threshold dead reckoning mechanism 
could be studied separately. The default value for 
heartbeat, however, is 5 s.  
 
Running the model for various values of threshold and 
radius showed that either the dead reckoning or heartbeat 
update mechanisms dominate PDU issuance for the 
circular trajectory. If a high value of threshold is set, all 
PDUs will be heartbeat updates issued every 5 s. If a low 

value is set for threshold, all PDUs will be dead-reckoned 
PDUs. 
 
However, for an elliptical trajectory, there can be a mix of 
both dead reckoned and heartbeat PDUs since the ellipse 
has different geometry from the symmetry of the circle. 
Figure 3 shows a screen shot from the model using an 
elliptical orbit. 
 

 
 
Figure 3: Screen shot from simulation model for elliptical 
orbit 
 
Here the first order algorithm predicts both heartbeat and 
dead reckoned PDUs while the second order algorithm 
predicts only heartbeat PDUs.  
 
3.5 Threshold for Different Entity Types 
 
In many systems, a single threshold value is used for 
different entity types. However, a fast jet or missile will 
easily exceed this threshold value in a very short time 
when manoeuvring at high velocity. It has been suggested 
(see DIS discussion groups in [4]) that different default 
values be used for entities operating in different domains 
such as land, sea and air.  
 
Several methods could be used to better define threshold 
levels. 

1. Specify default threshold levels to be used with 
different entity types; for example, 1 m for ships; 
10 m for aircraft.  

2. Alternatively, employ an adaptive thresholding, 
where the threshold is proportional to the entity’s 
velocity: p_threshold = p_constant * |v|, with v 

 



 

the given entity’s velocity, and |v|>0 and p_min 
<= p_threshold <= p_max 

 
The simulation model can be used to determine more 
realistic settings. Varying entity type for different 
thresholds gives the results shown in Table 7 for various 
typical speeds of some representative air, land and sea 
going entities. 
 
Table 7: PDU rates for different threshold values for 
different entity types travelling at typical speeds for each 
algorithm in an orbit of 1000 m radius (bolded values 
indicate that the PDUs are all heartbeat). 

Entity Type Threshold PDUs/s 
FPW/FVW 

Ship at 10 m/s 1 m 0.22 0.198 
Tank at 20 m/s 2 m 0.31 0.197 
Maritime Patrol 
Aircraft at 100 m/s 

10 m 0.684 0.238 

Fast jet at 250 m/s 25 m 1.074 0.438 

Missile at 500 m/s 50 m 1.511 0.716 
 
These results suggest that the relationship between PDU 
issuance, entity speed, and threshold is highly non-linear 
so that predicting threshold from a linear relationship as 
above is inadequate. Increasing speed from 10 m/s to 500 
m/s and scaling the threshold linearly from 1 m to 50 m 
results in a far greater PDU issuance rate (1.511 compared 
to 0.22) than would be expected from a linear relationship 
between entity speed and threshold. 
 
4. Conclusions 
 
A simulation model has been developed that predicts 
PDU issuance rates using both the dead reckoning and 
heartbeat update mechanisms. The model shows good 
agreement with experimental results and theory and also 
shows that second order algorithms result in far lower 
issuance rates of dead reckoned PDUs. 
 
For a circular orbit, all PDUS issued are either dead 
reckoned PDUs or heartbeat update PDUs due to 
symmetry. Other orbits, such as an ellipse, can yield a 
mix of both PDU types. 
 
This paper has examined positional dead reckoning and 
heartbeat updates for some simple trajectories. 
Orientational dead reckoning and the use of more 
sophisticated manoeuvres will be the subject of a future 
paper. 
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