

Modelling of Dead Reckoning and Heartbeat Update Mechanisms in Distributed
Interactive Simulation

Peter Ryan
Will Oliver

Air Operations Division
Defence Science & Technology Organisation (DSTO)

506 Lorimer St, Fishermans Bend, Melbourne, Victoria, 3001, AUSTRALIA
Peter.Ryan@dsto.defence.gov.au

Keywords:

Distributed Interactive Simulation; Dead Reckoning; Heartbeat

ABSTRACT: Dead reckoning is employed in Advanced Distributed Simulation exercises to reduce the need to
continually update a simulated entity’s state information. The IEEE Distributed Interactive Simulation (DIS) protocol
provides a standard set of 11 algorithms for entity position and orientation dead reckoning. Related to dead reckoning
is the heartbeat mechanism used to periodically define the current state of an entity. The IEEE standard defines
heartbeat rates for many Protocol Data Units (PDUs) with default values specified for rate of issuance of heartbeat
PDUs and timeout. Both the dead reckoning and heartbeat mechanisms are required to maintain continuity of entities
within a distributed simulation exercise. To study dead reckoning and heartbeat, a model was developed that simulates
these two mechanisms within DIS for entity position. This model can perform sensitivity analysis on the critical
parameters, such as entity speed, heartbeat rate and dead reckoning threshold for different dead reckoning algorithms.
The model demonstrated that the second order algorithm using acceleration and velocity is far more efficient than the
first order algorithm that used only velocity. Third order algorithms that use rate of change of acceleration were also
studied and shown to offer only marginal improvement while requiring additional computational resources. The model
also demonstrated that the default values for threshold are too small for fast moving entities such as aircraft and can be
used to determine more appropriate values. The fraction of heartbeat to dead reckoning PDUs was examined for
several different entity types (tank, aircraft, missile) with appropriate settings for threshold and heartbeat rate. It was
shown that the use of a fixed heartbeat rate is not appropriate for all entity types and that heartbeat PDUs predominate
for high values of threshold. The model also shows that issuance of heartbeat PDUs depends on which dead reckoning
algorithm is used: if an efficient algorithm that requires few dead reckoning PDUs is adopted, more heartbeat PDUs
are then required to maintain the entity within the simulation exercise.

1. Introduction

Advanced Distributed Simulation (ADS) was created to
link simulators, simulations and/or real devices so that the
various entities can interact with each other to conduct a
simulated game or exercise in the same synthetic
battlespace. ADS has been under development since the
early 1980s with the Simulator Networking (SIMNET)
Project undertaken by the US Defense Advanced
Research Projects Agency [1] and has continued through
the emergence of Distributed Interactive Simulation (DIS)
[2] in the early 1990s and High Level Architecture (HLA)
[2] in the late 1990s. In parallel with these efforts, the
Test and Training Enabling Architecture (TENA) has
been established to enable the live range community to
participate in distributed simulation exercises [3].

Distributed Interactive Simulation (DIS) is a networking
protocol standard that provides a method of
communicating entity state and other information such as
voice communications, radar and sonar emissions through

Protocol Data Units (PDUs). These PDUs consist of data
packets which are broadcast over the simulation network.
Standards for DIS PDUs were developed under the
guidance of the DIS Coordinating Committee based in the
US and utilising the Institute of Electrical and Electronic
Engineers (IEEE) Standards approval process [5], [6], [7].
The latest standard IEEE-1278.1a-1998 was released in
1998 [7].

A key feature of DIS is its use of a technique known as
dead reckoning to limit the rate at which simulated
entities need to update their entity attributes such as
position and velocity. DIS also uses the so-called
heartbeat mechanism to maintain the continuity of entities
within a simulation exercise when no dead reckoning
PDUs are issued. This paper describes a model that
simulates the dead reckoning and related heartbeat
mechanisms in DIS.

mailto:Peter.Ryan@dsto.defence.gov.au

2. Dead Reckoning and Heartbeat
Mechanisms in DIS

DIS employs both dead reckoning and heartbeat
mechanisms are required to maintain continuity of entities
within a distributed simulation exercise. These
mechanisms are described in the following sections.

2.1 Dead Reckoning Mechanism

DIS employs dead reckoning to limit the rate at which
Entity State PDUs (that include the entity’s positional and
orientation information) are issued. By estimating the
position/orientation of other simulated entities, it is not
necessary to receive a report about every change in
position/orientation that occurs in the entities trajectory
over time. Only when a change in position and orientation
differs by a prespecified amount (threshold) from the dead
reckoned position and orientation is a new update
required.

Further, each simulation application maintains both a high
fidelity model of the position and orientation of the
entities it generates (such as aircraft) and also a dead
reckoned model. When these differ by a given threshold
amount, an Entity State PDU is issued by the simulation
application to inform the other participating simulations.
Smoothing techniques can be used to eliminate jumps that
may occur in a visual display when the dead reckoned
position/orientation of an entity is corrected to the most
recently communicated position/orientation.

Dead reckoning can also be applied to articulated parts
such as a tank turret or submarine periscope. Absolute
linear error for each articulated part in a chain of
connected parts is used to determine if a threshold has
been exceeded.

2.2 Heartbeat Mechanism

Related to dead reckoning is the heartbeat mechanism
used to periodically define the current state of an entity.
Both the dead reckoning and heartbeat mechanisms are
required to maintain continuity of entities within a
distributed simulation exercise. For example, if an entity
is travelling in a straight line at constant velocity, then its
position can be accurately extrapolated at any future time
so that no dead reckoning update PDUs will be issued.
Thus, if the heartbeat PDUs were not issued, the entity
would time out and disappear from the simulation.

The IEEE standard defines heartbeat rates for many PDUs
with default values specified. These include simulation
for radios via the Transmitter PDU and IFF systems via
the IFF PDU (implemented in IEEE-1278.1a-1998).

However, there is some flexibility in the standard. The
values in Table 1 are the default values defined by the
IEEE standard.

Table 1: Default heartbeats for various PDUs as defined

by IEEE standard
PDU Type Heartbeat Rate

Entity State and Entity
State Update

5 s

Transmitter
(static/moving)

5 s / 2 s

Receiver 5 s
Designator 5 s
Electromagnetic
Emission

5 s

IFF/ATC/NAVAIDS 10 s

The Entity State heartbeat rate uses the symbolic name
HRT_BEAT_TIMER that has a default value of 5 s. An
entity times out of a simulation if an update PDU is not
received within a time interval determined by multiplying
the heartbeat multiplier rate HRT_BEAT_MPLIER (with
default value of 2.4) by the heartbeat rate – giving a
default value of 12 s.

Other PDUs also use the heartbeat mechanism including
Underwater Acoustics, Aggregate State, IsGroupOf,
Minefield State, Environmental Process, Gridded Data,
and Time Space Position Information [7].

2.3 Dead Reckoning Algorithms

DIS provides a standard set of 11 dead reckoning
algorithms. These include expressions for both positional
and orientation dead reckoning. They are specified by 3
letters – the first indicates whether the entity is fixed (F)
or rotating (R), the second indicates whether dead
reckoning rates are held constant as either rate of position
(P) or rate of velocity (V), while the third indicates
whether world coordinates (W) or body axis (B)
coordinates are used. Thus FPW specifies an algorithm
with orientation fixed and a constant rate of position in
world coordinates [6] and is given by:

tVPP ∆+= 001

The second order algorithm uses both the velocity and
acceleration terms and is defined as:

2
02

1
001)(tAtVPP ∆+∆+=

which is the Fixed Velocity World (FVW) algorithm.
Here subscript “0” refers to the parameters position (P),
velocity (V), and acceleration (A) at the start of the
interval and subscript “1” refers to the same parameters

calculated at the end of the interval of duration ∆t. Thus
the first order algorithm contains only the velocity term,
whereas the second order algorithm includes the
acceleration term. These values are calculated at the start
of the interval.

2.4 Threshold Calculation

The DIS IEEE 1278 standard (4.5.2.1.2.1 of [6]) defines
“the default method for calculating positional accuracy as
a threshold change in any direction or orientation”, and
(B.1.1) states that “Only when a change in position and
orientation differs by a prespecifed amount (threshold)
from the dead reckoned position and orientation is a new
update required.” These statements are ambiguous, and
can been interpreted two ways:

1. Component difference: If any of |∆x|, |∆y|, |∆z|
exceeds the threshold, where x, y, z define the
positional vector, then an Entity State PDU must
be issued.

2. Vector difference: If |∆p| exceeds the threshold,
where p is the positional vector, then an Entity
State PDU must be issued. The formula for
calculating vectorial difference is:

2

0
2

0
2

0)()()(zzyyxxp ddd −+−+−=∆

Whilst the vector difference method is more complicated
to calculate, it ensures that an entity is never more than 1
m (or the prescribed threshold) away from its actual
location, whereas using the component difference method,
an entity can be within the threshold bounds yet be further
away from its actual location, for example, ∆x = ∆ y = ∆z
= 0.9 m, |∆p|≈1.56 m.

The vector difference method has been used in the present
work.

2.5 Previous Work on Dead Reckoning

Previous work has been carried out on dead reckoning.
Lin and Schab [9] assessed the performance of dead
reckoning using a software tool considering four factors:
network load, computational load of the simulator,
accuracy of the dead reckoned trajectory compared with
the true trajectory, and smoothness of the dead reckoned
trajectory in the visual display using both data from a
flight simulator and an artificial race track trajectory.
Parts of this work were also published elsewhere [10 -
11].

This work predates the initial IEEE DIS standard and
appears to have been carried out to determine which dead
reckoning algorithms provide the best results. In [11], for

example, the authors examined many candidate
algorithms to determine which gave the best performance
in dead reckoning the flight simulator data. Many of these
trial algorithms were not included in the final DIS
standard set of dead reckoning algorithms.

Durbach and Fourneau studied the performance
evaluation of dead reckoning algorithms from a network
perspective [12]. PDU inter-arrival times were modelled
using a two state Markov process with parameters for the
model determined from experimental data. These authors
did not consider dead reckoning algorithms in detail but
rather developed a model to fit experimental data.

A more recent publication [13] examined the requirement
for adaptive dead reckoning algorithms. These authors
proposed an adaptive mechanism that sets thresholds
depending on Area of Interest and Sensitive Region where
update packets are only sent to relevant entities depending
on threshold level, so that a close entity may receive more
updates than a distant entity.

Dead reckoning is also used in distributed multi-player
games to reduce network traffic. Recent work indicated
the need for globally synchronized clocks to improve
accuracy [14].

3. Simulation Model for Dead Reckoning

and Heartbeat Update

To investigate the dead reckoning and heartbeat
mechanisms in DIS, a simulation model was developed in
the scripting language tcl/tk to study the effects for both
circular and elliptic manoeuvres. The circle is the most
tractable from a computational perspective and thus dead
reckoning calculations are straightforward. The ellipse
includes one extra parameter since it has both minor and
major axes.

This model enabled sensitivity analysis to be performed
for the critical parameters of speed, radius, dead
reckoning threshold, and heartbeat update rate. The model
computes an entity’s trajectory around a circular path as
perceived by another simulation. At each time interval,
the dead-reckoned position is calculated using the
equations in section 2.3 for both first and second order
algorithms. When this calculated position deviates from
the exact position by the threshold value, it is reset to the
exact position to emulate the update mechanism, and the
simulation continued.

In earlier work, results were also calculated for other
trajectories such as an ellipse which resulted in similar
findings to the present work [13].

For the case of an entity travelling in a horizontal circle,
the equations of motion are simply given as:

ωωωω

ωωωω
ωω

sin;cos
cos;sin

sin;cos

22 rytrx
trytrx

trytrx

−=−=

=−=
==

&&&&

&&

where ω is the angular velocity, and r is the radius. The
remote entity’s dead reckoned trajectory is tangential to
the exact circular trajectory until an update PDU is
received.

Figure 1 shows a screen shot from the model.

Figure 1: Screen shot from simulation model on PC

3.1 First and Second Order Algorithms for Circle

Table 2 shows the number of Entity State PDUs that
would be issued for circles of different radii for a
complete orbit using both the first and second order
algorithms with threshold set to 1 m in all cases. The
aircraft speed is set to 200 m/s and heartbeat update rate
to a high value of 1000 s so that the differences between
the two algorithms can be studied.

As expected, the number of PDUs issued increases as the
radius is increased, although this does not scale linearly.
For example, with a 20000 m radius, 628 PDUs are
needed if the first order algorithm is used, whereas only
125 are needed for a circle with 1000 m radius. For
smaller radii, the aircraft will be constantly turning in a

tight circle thus resulting in deviation from the linear and
quadratic tangential trajectories predicted by the dead
reckoning algorithms, whereas for larger radii the
deviation from the dead reckoning algorithms will be less
marked.

Table 2: PDUs issued for different radii
Radius (m) Number of PDUs

 First Order
(FPW)

Second Order
(FVW)

1000 125 33
2500 196 46
5000 314 58
10000 418 73
20000 628 93

Further, for each radius considered, at least three times as
many PDUs are required to remain within threshold for
the first order algorithm, than for the second order
algorithm. This indicates that the second order algorithm
much more effectively approximates the entity’s
trajectory than does the first order.

In Table 3, the effect of varying the threshold is examined
with an aircraft traveling at 200 m/s around a circle of
radius 5000 m. As expected, the number of PDUs
required decreases when the threshold is increased since
the predictive algorithms remain within threshold for
longer resulting in fewer entity updates.

Table 3: PDUs issued for different thresholds
Threshold (m) Number of PDUs
 First Order

(FPW)
Second Order

(FVW)
0.5 392 71
1 314 58

2.5 196 42
5 130 34

10 98 27
25 62 20
50 43 16

Varying both radii and threshold independently shows the
expected behaviour: (a) as radius is increased, more PDUs
are required, while (b) as threshold is increased, fewer
PDUs are required to predict the entity’s trajectory.

Of greater significance in these results is the considerable
difference between the numbers of update PDUs that
would be required for the two algorithms. In every case,
the first order algorithm requires about three times as
many update PDUs to be broadcast as the second order
algorithm. Thus the second order algorithm provides a far
more efficient means of extrapolating entity positions.

A simulation model was also developed for the elliptical
trajectory. This showed that at least three times as many
updates would be required if the first order algorithm was
used in preference to the second order algorithm.

As described in section 2.4, there is ambiguity as to
whether a component difference or vectorial difference
should be implemented. The current model has the ability
to use either method. For a circle, there is little difference
between the number of PDUs issued since for large values
of radius, only one component changes significantly so
that the vectorial difference is very similar to the
maximum value of component difference.

For an ellipse, there is more difference between the
vectorial and component method of calculating threshold
difference than for the circle. Simulations were run
varying threshold for an ellipse with major and minor
axes 10000 and 6000 m respectively leading to the results
in Table 4.

Table 4: PDUs issued for different threshold settings
using the elliptical trajectory for both threshold
calculation methods – results for the component method
are in brackets.

Threshold (m) PDUs Issued
 First Order

(FPW)
Second Order

(FVW)
1 380 (280) 108 (80)

2.5 237 (179) 62 (49)
5 173 (131) 46 (36)

10 122 (91) 35 (28)
20 86 (65) 28 (23)

As expected, the vectorial method yields a greater number
of PDUs than the component method since the threshold
is exceeded more readily.

3.2 Comparison with Experimental Results

The model was compared with experimental data from a
simple DIS-compliant Computer Generated Forces (CGF)
model from Mak (www.mak.com). This model uses an
aircraft entity that orbits around a fixed point at constant
speed. The parameters speed, radius, and dead reckoning
algorithm can be readily set while varying the other
parameters such as threshold requires editing and
recompilation.

Table 5 shows a comparison between the simulation
model predictions and the CGF system for several
different orbits using the 1 m threshold value.

Table 5: PDUs issued for different radii with threshold
set to 1m

Radius (m) PDU Rate (CGF results in brackets)
 First Order

(FPW)
Second Order

(FVW)
1000 3.98 (4.024) 1.05 (1.0526)
2500 2.495 (2.507) 0.586 (0.588)
5000 2.00 (1.818) 0.374 (0.370)
10000 1.333 (1.33) 0.235 (0.235
20000 0.99 (0.959) 0.148 (0.154)

These results demonstrate that the model provides
excellent agreement (better than 0.1%) with experimental
data providing confidence in its predictive capabilities.

The CGF model was able to use a range of dead
reckoning algorithms. Figure 2 shows the times at which
the first update PDU is required to be issued for the dead
reckoning algorithms supported (1 to 5) and for different
values of threshold.

Threshold

0

1

2

3

4

5

6

1 2 3 4 5
Dead Reckoning Model

T
im

e
(s

)

1 2
4 6
10

Figure 2: Times at which first dead reckoned PDU is
issued for different algorithms and threshold values (each
line represents a different threshold setting).

The data clearly show a significant advantage for the
second order algorithm (number 5). For each value of
threshold it predicts the highest issuance time for an
update PDU. Moreover, at the higher threshold settings
this time approaches the default heartbeat update time of
5 s. Here, orientation threshold has been set to a high
value of 30° so that algorithms 4 and 5 are very similar; if
the default value of 3° is used, algorithm 4 (RVW), that
includes orientation, is clearly superior.

3.3 Third Order Algorithms

First and second order algorithms have been addressed in
the previous sections. In earlier work [9], third order
algorithms were also studied. These include the rate of
change of acceleration as well as velocity and acceleration
to predict future entity positions.

http://www.mak.com/

The simulation model was extended to include a sample
third order algorithm (from [11]) that used the following
formula to predict position:

110
3

6
12

02
1

001 /)()()(−− ∆−∆+∆+∆+= taattatvPP

where a0 is the acceleration at the start of the interval, a-1
is the acceleration when the previous update PDU was
issued, and ∆t-1 is the time interval between the previous
two update times. This algorithm has at least 10 floating
point operations and thus will be more computationally
expensive than the first and second order algorithms
studied earlier. Note also that this is only one possible
third order algorithm; there are 4 other similar algorithms
that calculate dead reckoned position using different
means of computing change of acceleration [10].

PDU issuance rates and RMS errors were calculated using
the model for the third order algorithm for a range of
thresholds under the same conditions as in the previous
section. These results are shown in Table 6.

Table 6: PDU rates and RMS errors for second and third
order algorithms for an aircraft traveling at 200 m/s
around a circle of 5000 m radius

Threshold
(m)

Second/Third
Order
PDUs/s

Second/Third
Order RMS (m)

0.5 0.464/0.293 0.0037/0.0035
1.0 0.369/0.223 0.0073/0.0073
2.5 0.274/.0.178 0.017/0.017
5 0.216/0.153 0.034/0.033

10 0.172/0.127 0/069/0.066

These results show that the addition of third order terms
does not significantly improve the accuracy of the
extrapolation so that the additional computation is not
warranted. For example, with a 5 m threshold, 0.216
PDUs/s are issued with an RMS error of 0.034 m for the
second order algorithm. The third order algorithm predicts
a slightly lower PDU issuance rate of 0.153/s but with a
similar RMS error of 0.033 m.

3.4 Effect of Heartbeat Mechanism

In the previous sections, the heartbeat rate was set to
1000s so that the threshold dead reckoning mechanism
could be studied separately. The default value for
heartbeat, however, is 5 s.

Running the model for various values of threshold and
radius showed that either the dead reckoning or heartbeat
update mechanisms dominate PDU issuance for the
circular trajectory. If a high value of threshold is set, all
PDUs will be heartbeat updates issued every 5 s. If a low

value is set for threshold, all PDUs will be dead-reckoned
PDUs.

However, for an elliptical trajectory, there can be a mix of
both dead reckoned and heartbeat PDUs since the ellipse
has different geometry from the symmetry of the circle.
Figure 3 shows a screen shot from the model using an
elliptical orbit.

Figure 3: Screen shot from simulation model for elliptical
orbit

Here the first order algorithm predicts both heartbeat and
dead reckoned PDUs while the second order algorithm
predicts only heartbeat PDUs.

3.5 Threshold for Different Entity Types

In many systems, a single threshold value is used for
different entity types. However, a fast jet or missile will
easily exceed this threshold value in a very short time
when manoeuvring at high velocity. It has been suggested
(see DIS discussion groups in [4]) that different default
values be used for entities operating in different domains
such as land, sea and air.

Several methods could be used to better define threshold
levels.

1. Specify default threshold levels to be used with
different entity types; for example, 1 m for ships;
10 m for aircraft.

2. Alternatively, employ an adaptive thresholding,
where the threshold is proportional to the entity’s
velocity: p_threshold = p_constant * |v|, with v

the given entity’s velocity, and |v|>0 and p_min
<= p_threshold <= p_max

The simulation model can be used to determine more
realistic settings. Varying entity type for different
thresholds gives the results shown in Table 7 for various
typical speeds of some representative air, land and sea
going entities.

Table 7: PDU rates for different threshold values for
different entity types travelling at typical speeds for each
algorithm in an orbit of 1000 m radius (bolded values
indicate that the PDUs are all heartbeat).

Entity Type Threshold PDUs/s
FPW/FVW

Ship at 10 m/s 1 m 0.22 0.198
Tank at 20 m/s 2 m 0.31 0.197
Maritime Patrol
Aircraft at 100 m/s

10 m 0.684 0.238

Fast jet at 250 m/s 25 m 1.074 0.438

Missile at 500 m/s 50 m 1.511 0.716

These results suggest that the relationship between PDU
issuance, entity speed, and threshold is highly non-linear
so that predicting threshold from a linear relationship as
above is inadequate. Increasing speed from 10 m/s to 500
m/s and scaling the threshold linearly from 1 m to 50 m
results in a far greater PDU issuance rate (1.511 compared
to 0.22) than would be expected from a linear relationship
between entity speed and threshold.

4. Conclusions

A simulation model has been developed that predicts
PDU issuance rates using both the dead reckoning and
heartbeat update mechanisms. The model shows good
agreement with experimental results and theory and also
shows that second order algorithms result in far lower
issuance rates of dead reckoned PDUs.

For a circular orbit, all PDUS issued are either dead
reckoned PDUs or heartbeat update PDUs due to
symmetry. Other orbits, such as an ellipse, can yield a
mix of both PDU types.

This paper has examined positional dead reckoning and
heartbeat updates for some simple trajectories.
Orientational dead reckoning and the use of more
sophisticated manoeuvres will be the subject of a future
paper.

5. References

[1] Miller, D.D and J.A. Thorpe, (1995), “SIMNET: The

Advent of Simulator Networking”, Proc. IEEE Vol.
83, No. 8

[2] DIS Vision: A Map to the Future of Distributed
Simulation. (1994). Prepared by the DIS Steering
Committee, Institute of Simulation and Training,
University of Central Florida, Orlando, Florida, US

[3] High Level Architecture website on Defense
Modeling and Simulation Office (DMSO) website:
https://www.dmso.mil/public/transition/hla/

[4] Foundation Initiative 2010 TENA web site:
http://www.fi2010.org/index.php

[5] Simulation Interoperability Standards Organisation
(SISO) web site (2003): http://www.sisostds.org/

[6] IEEE 1278-1993 (1993), IEEE Standard for
Information Technology - Protocols for Distributed
Interactive Simulation Applications

[7] IEEE 1278.1-1995 (1995), IEEE Standard for
Information Technology - Protocols for Distributed
Interactive Simulation Applications

[8] IEEE 1278.1a-1998, (1998), IEEE Standards for
Information Technology – Protocols for Distributed
Interactive Simulation

[9] Lin, K-C. and D.E. Schab, (1994), ”The Performance
Assessment of the Dead Reckoning Algorithms in
DIS”, Simulation, Vol. 63, No 5., p 318 - 325

[10] Lin, K-C. and D.E. Schab, (1995), “Network Load in
Distributed Interactive Simulation”, J. Aircraft, Vol.
32, No. 6, p 1392 – 1394

[11] Lin, K_C., Wang, M., and J. Wang, (1996),
“Smoothing of Dead Reckoning Image in Distributed
Interactive Simulation, J. Aircraft, Vol. 33, No.2, p
450 - 452

[12] Durbach, C. and J-M Fourneau, (1998),
“Performance Evaluation of a Dead Reckoning
Mechanism”, Proc. IEEE Second International
Workshop on Distributed Interactive Simulation, held
Montreal, Canada

[13] Lee, B-S, Cai, W., Turner, S, and L. Chen, (2003),
“Adaptive Dead Reckoning Algorithms for
Distributed Interactive Simulation”, International
Journal of Simulation, Systems Science, &
Technology, Vo1. 1, 2003 (web reference:
http://ducati.doc.ntu.ac.uk/uksim/journal/issue-1/Lee-
Turner/B-S%20Lee.pdf)

[14] Aggarwal, S., Banavar, H., Khandelwal, A.,
Mukherjee, S., and S. Ranjarajan, (2004), ”Accuracy
in Dead Reckoning based Distributed Multi-Player

https://www.dmso.mil/public/transition/hla/
http://www.fi2010.org/index.php
http://www.sisostds.org/

Games”, Proc. of ACM SIGCOMM 2004, Netgames
2004 Workshop

Author Biographies

PETER RYAN is a Principal Research Scientist in the
Defence Science Technology Organisation's Air
Operations Division within the Australian Defence
Department. He has a background in the modelling and
simulation of military operations. His main research
interests include Advanced Distributed Simulation, real
time simulation, synthetic environments, and their
potential to provide enhanced training solutions for the
Australian Defence Force. He is also a member of SISO’s
DIS Product Development Group.

WILL OLIVER holds degrees in Aerospace Engineering
and Mathematics. Mr Oliver joined the Air Operations
Division of DSTO in 2006 and works in the Advanced
Distributed Simulation Laboratory; researching
interoperability issues and analysis techniques of
advanced distributed simulation. Mr Oliver is a member
of the SISO DIS Product Development Group. Prior to
joining DSTO Mr Oliver developed software for flight
simulators and simulated maintenance trainers.

	Introduction
	Dead Reckoning and Heartbeat Mechanisms in DIS
	Dead Reckoning Mechanism
	Heartbeat Mechanism
	Dead Reckoning Algorithms
	Threshold Calculation
	Previous Work on Dead Reckoning

	Simulation Model for Dead Reckoning and Heartbeat Update
	First and Second Order Algorithms for Circle
	Comparison with Experimental Results

	Figure 2: Times at which first dead reckoned PDU is issued f
	Third Order Algorithms
	Effect of Heartbeat Mechanism
	Threshold for Different Entity Types

	Conclusions
	References

